Black Soldier Fly HydroponicsI've submitted BSF Hydro as a participant in the "Deep Space Food Challenge" put on by NASA and CSA - you can see my progress and ideas here. Please note, while I mention University of Hawaii at Hilo in several places, 0% of this technology/system was created in partnership with UH or while I attended UH. I had this entire system functional long before I ever went to UH, however I did present this system at a UH agricultural competition, and they were interested enough in this system to have me build a complete system on their Hilo campus. Overview: A family sized food growing system utilizing only food waste to then produce fresh vegetables. Through very fast composting via black soldier fly (BSF) larva (similar to vermiculture quality composting), an individual or families generated food waste is quickly recycled into high quality hydroponic nutrient base to grow all of their own vegetables. Optional: Piggybacking this technology, earthworms can living in the hydroponic trays with the plant roots, and guppies can live in the compost tea, along with the beneficial bacteria. The system can be off-grid, using a solar panel (no batteries) to run a ebb/flow cycle during the daytime hours (no batteries). In the ebb/draining time, an aerator turns on and provides oxygenation for the beneficial bacteria and guppies in the compost tea tank. (Click the image for a 1.4mb PDF overview of how the system works.) The time schedule may be 15 minutes fill time and 45 minutes drain time if you live in a humid moderate temperature climate (Hawaii), while it might be 15 minutes fill time, and 15 minutes drain time in hotter/drier climates (Arizona). System Output: I am regularly growing and harvesting: Tomatoes, cucumbers, carrots, beets, lettuce, arugula, green beans, peas, strawberries, onions, zucchini, bell peppers, celery, various herbs, and others. I tend to grow only fast producing plants, and not things like broccoli or asparagus which take over a year to produce- that's valuable real estate that can be producing edible food long before they do. I also have done okra before, but the quantity of fruit it produces to the size of the plant is not so great, so I evicted the okra. Please note that while your grow trays may be only 3'x3' or 4'x4' each, you can PACK the trays with plants. You can entirely disregard any traditional spacing requirements since the nutrients come to the plants, there is no competition for those nutrients. The main thing is to plan your trays with the tallest plants on the north side of the trays (better yet, a lattice for climbing plants on the north side), so that they don't shade any smaller ones. Nutrient Sources: Food waste only. Which consists of any edible foods, including meats. Any waste like chicken parts are encouraged. The more diverse the food waste, the more complete the nutrient base. No bulking materials should be added (no grass, leaves, paper, etc). No woody parts like grape stems, or they will remain as the larvae will not process them. Egg shells are needed before you add food as part of the drainage system, but continually adding them after that, they are not processed and add to some bulk material which will eventually build up to be removed from the bins and is excellent around trees or a soil garden. Normal amounts of food waste from preparing meals is all that is required since the system recirculates the nutrients until they are used by a plant (none lost as with dirt farming). If you eat out most of your meals, and don't have food waste, this is a problem. Feel free to collect additional waste from work or neighbors. You will NEVER use traditional hydroponics chemicals EVER. This is a complete ecosystem, and chemicals/fertilizers would be detrimental to the beneficial bacteria, guppies, earth worms, etc. and are unnecessary. Ongoing Maintenance:
Once constructed, ongoing maintenance is extremely limited. Simply add food waste as available (I do so about every 4-5 days), add vegetable seeds where desired (most seeds germinate fine directly), and harvest as appropriate. Depending on the environment and the size of the system, some water will need to be added every each week. In my design, a rain gutter terminating at a 5 gallon bucket keeps water handy as needed. The food compost/BSF bins over the water tank with screen bottoms allow for nutrient release as the BSF make it available (and for later rinsing). The system is designed to be a "life long" system as much as possible, particularly when redwood is used in locations with termites. The clear agricultural sheet roofing is rated at 5-7 years life, and is the only ongoing expected repair. This sheet roofing is used on a system in Colorado currently and easily supports 18" of snow. You could use more substantial clear roofing panels, but this would require additional roofing structure, and may limit the sunlight/UV that the plants need or want. Design & Construction: I've built this system three times now, the first was at my home in Hawaii (3 - 36" trays), one on the Univ. of Hawaii @ Hilo campus (3 - 48" trays), and one in Colorado (3 - 36" trays). I used redwood on the Hawaii system due to significant rot & termite issues, so this increases the price of the unit as designed. The price using typical white/construction lumber for my design using three 3x3 trays is about $1,000. Using redwood, about $1,400. The unit I built on the University of Hawaii campus is three 4x4 trays (48 sqft w/ 3-4x4 vs. 29 sqft with 3-3x3) in redwood is $2,500. Most likely these prices will be lower outside of Hawaii since things just cost more there (shipped in). With my design you can also use zip-on walls with reversible black/white so that even in winter in some areas, the system is still productive year round. In more severe winter areas, you could have a BSF composting system setup in the garage (with some heat in winter) to continue to process food waste, for immediate start up in spring. Using the zip-on walls in this case allows for a much longer growing season. For my design, it takes 3 full days for one construction talented person to build assuming you have all materials on hand. Here is the wiring diagram of the solar panels, regulator, timer, pump & aerator. You can also just use a waterfall pump and aerator designed to plug into the wall (on a simple timer with 15 minute increments). When first establishing a system, you will need likely several weeks to several months worth of BSF food processing to create the initial level of nutrients to begin using your system (before planting). You can start your BSF processing and composting before you build a system. If you live in a particularly cold climate, or high altitude, this is especially a good idea to handle any BSF challenges before investing in a full system. (see the section on my desired future research) It absolutely is possible to build a less interesting (less expensive) frame/cover and be successful since the important factors are using the BSF compost with a hydroponics system. Ecoasis in AZ This system came together after literally a friend of a friend who heard about BSF Hydro, contacted me about assisting a local nonprofit - Ecoasis, with their greenhouse. They had purchased a partial hydroponics system, with the intention of setting up a aquaponics system - using fish as the primary source of nutrients. Aquaponics has allot of issues, the main one being that the fish provide almost exclusively nitrates for the plants, and nothing else. Which means you can grow lettuce very well, but no other plants will thrive. I did suggest that we start off with the system fully laid out, and only fill one tray with growing medium since that is the most costly part of the project. This will allow them to get started, build up the nutrient water quickly (vs. enough for 6 trays immediately), and basically have their own proof of concept. The only remaining items to complete all trays is to install the ebb/flow towers, plumb them together on each side, add 2 new larger pond pumps (1,100 gal/hr), and pour in the growing medium. They basically had acquired grow trays and a water trough constructed from one of these liquid shipping cubes you have probably seen before. They had a total of 4 cubes and frames, which will create up to 8 trays, or 7 trays and one water trough. They are roughly 42"x38". The previous owner had cut off the top and bottom to use as the trays, which during setup proved to be a problem. Ideally, they would have cut off the sides to make the trays (they would be the same size as the top/bottom), however with no screw on top or bottom drain. We had problems with both the screw in tops and the bottom valves, so try to cut off the sides instead, which also ends up leaving a flat tray bottom vs. if you use the top/bottom. If you use one for the trough, still cut the side off for a tray, then the screw in top and bottom valve will be on the side. Seal BOTH with an adhesive sealant (all screw in top gaskets were cracked and would have leaked). Using these cubes, you could have 1 tray and trough from one cube, 3 trays and one trough from 2 cubes, etc. I think though the limit is likely 3 trays per trough, since you need at least enough water to fill those 3 trays at least 2x. In their case, and for the sheer quantity of food they will process, we did one trough, with 6 trays. We will alternate their cycle- using 2 pumps, run the left side for 15 minutes (flow), with 15 minutes off (ebb), then the right side will do the opposite time- running when the other side is in the ebb time. We could have used one pump and some electrical valves, but that would have been both complicated and more costly. We were also able to use the frames and even the bottom skid (where the fork lift picks them up) in our design. The short part of the frames was great to just set around the trays to support the sides. When full of water and grow medium, the long sides might bow out some otherwise. But if you build a bottom support frame, you might just build in sides for them and not use those short frame sides (see pics). With the taller remaining cube frame, we just stood those up around the trays as they can act as short lattice for the plants. We considered cutting them up to make them just across the back, but since we supported the cubes on salvage office desks, there was no good way to really attach those. If you did build a wooden support/frame, then cutting up those cubes into 2 "L" pieces and securing them on the north side of the trays would make some decent heavy duty lattice for your vining plants or tomato supports. In addition, one of the cubes had a black plastic skid, which we were able to repurpose into the top over the water trough, to hold six 5 gallon pails, which we converted into BSF larva/food bins (see pics). So, if you have a choice to get a cube with the plastic bottom skid and want to duplicate that design, opt for the plastic bottom one vs. the steel ones.
Click here to Subscribe (or unsub) to get infrequent BSF Hydro updates sent to you via email. PicturesBelow the system I built in Hawaii with three 3'x3' trays - withstood a category one hurricane with no damage what so ever.Below is the University of Hawaii system with three 4'x4' trays Here is my AG 230 class project paper on this system. Below is a close up of the University of Hawaii system BSF captive compost bins mounted over the 150 gallon reservoir. There are doors to close the front not shown here. I am currently (2016-current) living & traveling in a 36' motorhome, and traveling the US & Mexico, and so I build a BSFHydro system on my tow car trailer. I did finally give up on the trailer based garden, as the nutrient water tank under the trailer repeatedly would break open. Below is a pic of my garden 9 weeks after starting from seeds. The most important factor on the BSF bins is capture of the liquids created while the BSF are processing your food waste, and then to rinse the finished compost materials with the water from the reservoir (every week or two) so that the nutrients end up in the nutrient water in the reservoir. I've found it best to use stainless steel window screen for the bottom (100% coverage), then it's very important to used crumbled up egg shells (1.5" deep right on the screen). Without the egg shells, the screen WILL plug up, causing an anaerobic condition (no oxygen, build up of liquids), then it will stink - and it should NEVER stink (see section below about stinky compost issues). A few notes:
The suggested BSF bin:
Commercially available BSF bins So far, all the commercially available BSF bins focus on harvesting the larva for feed stock (to feed chickens, fish, etc). Every design I've seen likely is going to go routinely anaerobic (and stinky), and since they are sold as single units, are surely fraught with problems. I've seen many using different materials in the bottom of the bins, to facilitate draining of liquids, but all have issues. I myself tried coconut matting, which worked well for drainage, but became compacted with larva which eventually died in place. Basically, the commercial BSF systems I've seen will cause more problems than the benefit of their purpose. However, I have not used any of the commercially available bins myself, and this is based on my experience with various methods I tried, and my best guesstimate of how the commercial bins work based on exterior photos. The screen bottom as I propose and have used works well (combined with the crushed egg shell), and appears to be a good hole size for the processed particles to pass without much clogging. The clogging I did get cleared up when filled with water, eventually self clearing. Captive vs. Non-captive Flies I suggest a captive system where the bins are contained in a screen enclosure so that the flies (or larva) are unable to escape (or inside an enclosed greenhouse). I've had geckos, lizards, frogs and birds all simultaneously having their way with my BSF larva and flies in a non-captive scenario, creating a problem for reproduction. As well high winds may blow flies too far for them to return to mate and lay eggs. If you build a captive system, make sure you create enough space for them to fly around. Getting your BSF bins started When you first start, you will likely order or get a limited number of BSF larva from someone (&/or order off eBay). The trick is to not overwhelm your initial limited number of larva with food waste (although if you order say 5,000 newborn/small larva, they will eat allot of food). You will need to feed them in smaller amounts, just enough that they can consume in a day or two. Avoid meat while getting the colony started since it may go off-bad before they have a chance to process it all. I'd suggest starting with a batch of around 5,000 larva. This is around 2 measured cups of small/baby larva. As well, if you have an option to also have older (larger) larva, this may help since they will of course turn to flies and lay eggs much sooner. The reason being that the larva live so long as larva eating, that if you start only with very young larva, it may be 4-6 months before they mature, pupate into flies, and then lay eggs. What you want is batches of eggs as soon as possible, so that you can build the colony quickly and then process all your food waste without any issues. During this time, if you live in a colder environment, you will also need to make sure that the bins don't get too cold at night (guessing no lower than 50 degrees). Once the colony is established, they actually maintain their temperature in the bin to some degree. As well, once you have been processing food for a while, some non-processed organics in the bins may act as insulation. Note that they won't lay eggs unless it gets to at least 80 degrees during the day (also won't hatch), so colder environments may need a heater in their system to ensure this happens. Getting your growing trays started When you first start, you will need to allow your nutrient water to get established. This really depends on how much water you have in your reservoir, and how many trays you are using. Basically when you start, there will be no nutrients in the water, so you need to allow time for the BSF larva to process food to get that water to a nutrient level to sustain the plants. Generally, I'd say this is 2 weeks minimum if you are processing lots of food waste compared to your system size. Other Considerations - My adventures using this system on my car trailer, and traveling all the time with it (very often every 2 weeks driving for 6+ hours) has led to some great experiences & challenges - related to just being mobile, and some that relate to doing the garden system in different environmental conditions. |
These images are of food grown in a BSF Hydro system at home, or at the system I built at the University of Hawaii @ Hilo. Just place your mouse pointer over a thumbnail to view the image larger. |